The University of Texas at Arlington

Lecture 6 PIC Programming in C

CSE 3442/5442

Embedded Systems 1

Based heavily on slides by Dr. Gergely Záruba and Dr. Roger Walker

Code Space Limitations

- On a general purpose PC, we don't usually care about our program's size
- MB/GB/TB range for general purpose PCs
 Ex: 1300 line .C file 50 KB → 40 KB .hex file
- 2MB max in PIC18's Program ROM
- For our PIC18F452 → Only 32KB

- See datasheet

Why C over ASM?

- While Assembly Language produces a much smaller .HEX file than C...
 - More human-readable in C
 - Easier to write and less time consuming
 - C is easier to modify and update
 - Don't care about absolute ROM locations
 - Access to many C function libraries
 - C code is portable and can be used on other microcontrollers with little or no modification

C Integer Data Types (Generic)

Туре	Explanation	Format Specifier
char	Smallest addressable unit of the machine that can contain basic character set. It is an integer type. Actual type can be either signed or unsigned depending on the implementation. It contains CHAR_BIT bits. ^[3]	%с
signed char	Of the same size as char, but guaranteed to be signed. Capable of containing at least the [-127, +127] range; ^{[3][4]}	%C (or %hhi for numerical output)
unsigned char	Of the same size as char, but guaranteed to be unsigned. It is represented in binary notation without padding bits; thus, its range is exactly [0, 2 CHAR_BIT - 1]. ^[5]	%C (or %hhu for numerical output)
short short int signed short signed short int	Short signed integer type. Capable of containing at least the [-32767, +32767] range; ^{[3][4]} thus, it is at least 16 bits in size. The negative value is -32767 (not -32768) due to the one's-complement and sign-magnitude representations allowed by the standard, though the two's-complement representation is much more common. ^[6]	%hi
unsigned short unsigned short int	Similar to short, but unsigned.	%hu
int signed signed int	Basic signed integer type. Capable of containing at least the [-32767, +32767] range; ^{[3][4]} thus, it is at least 16 bits in size.	%i or %d
unsigned unsigned int	Similar to int, but unsigned.	%u
long long int signed long signed long int	Long signed integer type. Capable of containing at least the [-2147483647, +2147483647] range; ^{[3][4]} thus, it is at least 32 bits in size.	%li
unsigned long unsigned long int	Similar to long, but unsigned.	%lu
long long long long int signed long long signed long long int	Long long signed integer type. Capable of containing at least the [-9223372036854775807, +9223372036854775807] range; ^{[3][4]} thus, it is at least 64 bits in size. Specified since the C99 version of the standard.	%Ili
unsigned long long unsigned long long int	Similar to long long, but unsigned. Specified since the C99 version of the standard.	%llu

C Integer Data Types (C18 Compiler)

TABLE 2-1: INTEGER DATA TYPE SIZES AND LIMITS

Туре	Size	Minimum	Maximum
char ^(1,2)	8 bits	-128	127
signed char	8 bits	-128	127
unsigned char	8 bits	0	255
int	16 bits	-32,768	32,767
unsigned int	16 bits	0	65,535
short	16 bits	-32,768	32,767
unsigned short	16 bits	0	65,535
short long	24 bits	-8,388,608	8,388,607
unsigned short long	24 bits	0	16,777,215
long	32 bits	-2,147,483,648	2,147,483,647
unsigned long	32 bits	0	4,294,967,295

C Integer Data Types (XC8 Compiler)

TABLE 5-1: INTEGER DATA TYPES

Туре	Size (bits)	Arithmetic Type
bit	1	Unsigned integer
signed char	8	Signed integer
unsigned char	8	Unsigned integer
signed short	16	Signed integer
unsigned short	16	Unsigned integer
signed int	16	Signed integer
unsigned int	16	Unsigned integer
signed short long	24	Signed integer
unsigned short long	24	Unsigned integer
signed long	32	Signed integer
unsigned long	32	Unsigned integer
signed long long	32	Signed integer
unsigned long long	32	Unsigned integer

Unsigned char (0 to 255)

- PIC18 is 8-bit architecture, char type (8 bits) is the most natural choice
- C compilers use signed char (-128 to +127) by default unless we put "unsigned"
 - char == signed char

```
Write a C18 program to send values 00-FF to Port B.
Solution:
#include <P18F458.h> //for TRISB and PORTB declarations
void main(void)
{
    unsigned char z;
    TRISB = 0; //make Port B an output
    for(z=0;z<=255;z++)
        PORTB = z;
    while(1); //NEEDED IF RUNNING IN HARDWARE
}</pre>
```


Write a C18 program to send hex values for ASCII characters of 0, 1, 2, 3, 4, 5, A, B, 0x21 33 t 0x41 66 A 0x22 34 t 0x42 66 B 0x23 35 t 0x44 66 D 0x24 36 S 0x44 71 B 0x27 39 t 0x47 71 B 0x28 40 (0000000000000000000000000000000000		Hex	Dec	Char	Hex	Dec (Char
Write a C18 program to send hex values for ASCII characters of 0, 1, 2, 3, 4, 5, A, B, 0x22 33 ± 0 0x41 65 A C, and D to Port B. 0x23 35 ± 0 0x43 67 C Solution: 0x27 39 ± 0 0x45 69 E #include <p18f458.h> 0x44 68 D 0x23 35 ± 0 void main (void) 0x24 36 ± 0 0x44 72 H { 0x24 36 ± 0 0x44 73 H unsigned char mynum[] = "012345ABCD";//data is stored in RAM 0x22 4 ± 0 0x48 75 K unsigned char z; //make Port B an output 0x25 40 ± 0 0x50 80 P for (z=0; z<10; z++)</p18f458.h>		0x20	32	Space	0x40	64	6
Write a C18 program to send hex values for ASCII characters of 0, 1, 2, 3, 4, 5, A, B, 0x22 33 # " 0x43 66 B C, and D to Port B. 0x26 38 6 0x46 70 F Solution: 0x27 39 ' 0x47 71 6 #include <p18f458.h> 0x24 2 * 0x44 74 J void main(void) 0x22 44 . 0x48 75 K { 0x22 44 . 0x48 77 M unsigned char z; 0x24 5 . 0x49 77 M TRISE = 0; //make Port B an output for (z=0;z<10;z++)</p18f458.h>		0x21	. 33	1	0x41	65	А
Write a C18 program to send hex values for ASCII characters of 0, 1, 2, 3, 4, 5, A, B, C, and D to Port B. Solution: #include <p18f458.h> void main(void) { unsigned char mynum[] = "012345ABCD";//data is stored in RAM unsigned char z; TRISB = 0; //make Port B an output for(z=0;z<10;z++) PORTB = mynum[z]; while(1); //stay here forever } dxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</p18f458.h>		0x22	34	"	0x42	66	в
Write a C18 program to send hex values for ASCII characters of 0, 1, 2, 3, 4, 5, A, B, C, and D to Port B. Solution: #include <p18f458.h> void main(void) { unsigned char mynum[] = "012345ABCD";//data is stored in RAM unsigned char z; TRISB = 0; //make Port B an output for(z=0;z<10;z++) PORTB = mynum[z]; while(1); //stay here forever } (0x28 40 (0x48 70 F 0x27 39 (0x47 71 G 0x28 40 (0x48 72 B 0x28 40 (0x48 72 B 0x28 41) 0x49 73 I 0x28 42 * 0x48 74 J 0x28 42 * 0x48 74 J 0x28 40 (0x48 77 H 0x28 40 (0x48 78 N 0x28 40 (0x58 80 P 0x33 51 3 0x53 83 S 0x34 52 4 0x58 88 x 0x35 55 7 0x57 87 W 0x38 56 8 0x58 88 x 0x38 56 8 0x58 88 x 0x38 59 (0x58 99 Y 0x38 58 (0x58 98 Y 0x38 56 (0x56 88 0x58 98 Y 0x38 56 (0x56 98 0x58 99 1 0x38 62 (0x56 92 \ 0x38 63 7 0x57 99 y55 (0x58 94 7 (0x58 94 7 (0x58 94 7 (0x58 94 7 (0x58 94 7 (0x58 94 7) (0x58 94 7 (0x58 94 7 (0x58 94 7) (0x58 94</p18f458.h>		0x23	35	#	0x43	67	C
C, and D to Port B. Solution: #include <p18f458.h> void main(void) { unsigned char z; TRISB = 0; TRISB = 0; PORTB = mynum[z]; while(1); } //stay here forever } (unsigned char z; TRISB = 0; C, and D to Port B an output for (z=0;z<10;z++) PORTB = mynum[z]; while(1); } //stay here forever } (unsigned char z; TRISB = 0; C, and D to Port B an output (unsigned char z; TRISB = 0; C, and D to Port B an output (unsigned char z; C, and D to Port B an output (unsigned char z; C, and D to Port B an output (unsigned char z; C, and D to Port B an output (unsigned char z; C, and D to Port B an output (unsigned char z; C, and D to Port B an output (unsigned char z; (unsigned char z; (unsig</p18f458.h>	Write a C18 program to send hex values for ASCII characters of 0 1 2 3 4 5 A B	0x24	30	Ş	0x44	68	D
C, and D to Port B. Solution: #include <p18f458.h> void main(void) { unsigned char z; TRISB = 0; //make Port B an output for(z=0;z<10;z++) PORTB = mynum[z]; while(1); //stay here forever } (2020 + 1) (2020 +</p18f458.h>	The a cro program to some new values for resent characters of 0, 1, 2, 5, 4, 5, 11, D,	0x25	38	б 2	0x45	70	F
Solution: #include <p18f458.h> 0x48 72 H woid main(void) 0x28 40 (0x48 72 H) { 0x28 41) 0x49 73 I unsigned char mynum[] = "012345ABCD";//data is stored in RAM 0x22 44 : 0x48 76 K unsigned char z; 0x20 45 - 0x40 77 M TRISB = 0; //make Port B an output 0x30 48 0 0x50 80 P for(z=0;z<10;z++)</p18f458.h>	C, and D to Port B.	0x27	39	1	0x47	71	G
Solution: #include <p18f458.h> 0x49 73 I yoid main(void) 0x28 42 * 0x44 74 J { unsigned char mynum[] = "012345ABCD";//data is stored in RAM 0x22 44 , 0x42 76 L unsigned char z; 0x30 48 0 0x26 77 M TRISB = 0; //make Port B an output 0x32 50 2 0x28 83 S for(z=0;z<10;z++)</p18f458.h>		0x28	40	(0x48	72	Н
bintion: #include <p18f458.h> 0x2A 42 * 0x4A 74 J #include <p18f458.h> void main (void) 0x2B 43 + 0x4B 75 K void main (void) { 0x2D 44 , 0x4C 76 L unsigned char z; . 0x2D 45 - 0x4D 77 M unsigned char z; . . 0x4D 77 M for (z=0;z<10;z++)</p18f458.h></p18f458.h>	Solution:	0x29	41	j	0x49	73	I
<pre>#include <p18f458.h> void main(void) { unsigned char mynum[] = "012345ABCD";//data is stored in RAM unsigned char z; TRISB = 0;</p18f458.h></pre>	Solution.	0x2A	42	*	0x4A	74	J
<pre>void main(void) { unsigned char mynum[] = "012345ABCD";//data is stored in RAM unsigned char z; TRISB = 0;</pre>	#include <p18f458.h></p18f458.h>	0x2B	43	+	0x4B	75	K
<pre>{ (unsigned char mynum[]= "012345ABCD";//data is stored in RAM unsigned char z; TRISB = 0;</pre>	void main(void)	0x2C	44	7	0x4C	76	L
unsigned char mynum[] = "012345ABCD";//data is stored in RAM 0x2E 46 . 0x4E 78 N unsigned char z; 0x2F 47 / 0x4F 78 0 TRISB = 0; //make Port B an output for(z=0;z<10;z++)	{ Contractions are the contract of the second of the secon	0x2D	45	-	0x4D	77	М
unsigned char z; //make Port B an output 0x2F 47 7 0x55 81 0 TRISB = 0; //make Port B an output 0x31 49 1 0x51 81 0 for(z=0;z<10;z++)	ungigned abor munum[] = "01224EAPCD", //data is stored in DAM	0x2E	46	•	0x4E	78	N
Unsigned char z; TRISB = 0; //make Port B an output for(z=0;z<10;z++) PORTB = mynum[z]; while(1); //stay here forever }	unsigned char mynum[] = 012345ABCD ;//data is stored in RAM	0x2F	4/	/	0x4F	79	D
TRISB = 0; //make Port B an output for(z=0;z<10;z++)	unsigned char z;	0x30	40	1	0x50	81	0
<pre>for(z=0;z<10;z++) PORTB = mynum[z]; while(1); //stay here forever } </pre>	TRISB = 0; //make Port B an output	0x32	50	2	0x52	82	R
PORTB = mynum[z]; //stay here forever 0x34 52 4 0x54 84 T while(1); //stay here forever 0x36 54 6 0x56 86 V } 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x59 89 Y 0x38 56 8 0x58 91 [0x30 61 = 0x55 93] 0x32 62 > 0x55 93] 0x38 63 2 0x58 91 [for(z=0;z<10;z++)	0x33	51	3	0x53	83	S
while(1); //stay here forever 0x35 53 5 0x55 85 U 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x59 89 Y 0x38 58 : 0x58 90 Z 0x30 61 = 0x50 93] 0x3E 62 > 0x55 93] 0x3F 63 2 0x5F 93 5	PORTB - mynum[z].	0x34	52	4	0x54	84	т
While (1); //stay here forever) 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x57 87 V 0x38 58 1 0x58 88 X 0x38 59 7 9 0x59 89 Y 0x32 60 <	rokib = mynam(2),	0x35	53	5	0x55	85	U
) 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x59 89 Y 0x3A 58 : 0x5A 90 Z 0x3B 59 ; 0x5B 91 [0x3C 60 <	while(1); //stay here forever	0x36	54	6	0x56	86	V
0x38 56 8 0x58 88 X 0x39 57 9 0x59 89 Y 0x3A 58 : 0x5A 90 Z 0x3B 59 ; 0x5B 91 [0x3C 60 <		0x37	55	7	0x57	87	W
0x39 57 9 0x59 89 Y 0x3A 58 : 0x5A 90 Z 0x3B 59 ; 0x5B 91 [0x3C 60 <		0x38	56	8	0x58	88	X
0x3A 58 : 0x3A 90 2 0x3B 59 ; 0x5B 91 [0x3C 60 <		0x39	57	9	0x59	89	Y
0x3B 33 i 0x3B 91 [0x3C 60 <		0x3A	50		0x5A	90	Z r
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		0x30	60	i <	0x50	92	
0x3E 62 > 0x5E 94 0x3F 63 ? 0x5FQ 95		0x3D	61	=	0x5D	93	ì
0x3F 63 ? 0x5F Q 95		0x3E	62	>	0x5E	94	~
		0x3F	63	?	0x5F	3 95	


```
#include <xc.h> //PIC18F452
 3
   // This program sends numeric values (hex/dec/bin)
   // for the ASCII characters of 0-5, A-D to PORTB
 4
 5
   void main (void)
 6
 7 🛛 🔤
       unsigned char myNum[] = "012345ABCD"; //data stored in RAM
 8
       unsigned char z;
10
       TRISB = 0; //PORTB is an OUTPUT on all pins
12
13
       for(z=0; z<10; z++)</pre>
14
           PORTB = myNum[z]; //write ASCII char to PORTB
15
16
```


1	<pre>#include <xc.h> //PIC18F452</xc.h></pre>
2	
3	// This program sends numeric values (hex/dec/bin)
4	// for the ASCII characters of 0-5, A-D to PORTB
5	
6	void main(void)
7	₽ {
8	unsigned char myNum[] = "012345ABCD"; //data stored
9	unsigned char z;
.0	
.1	TRISB = 0; //PORTB is an OUTPUT on all pins
.2	
.3	for(z=0; z<10; z++)
4	₽ {
5	PORTB = myNum[z]; //write ASCII char to PORTB
. 6	}
-	

z = 0 PORTB = '0' (in code) PORTB = 0x30 = 48 (actual)

PORTB = 0b 0011 0000 (pins)

Hex	Dec	Char	Hex	Dec	Char
0x20	32	Space	0x40	64	6
0x21	33	1	0x41	65	A
0x22	34		0x42	66	в
0x23	35	#	0x43	67	С
0x24	36	\$	0x44	68	D
0x25	37	8	0x45	69	Е
0x26	38	&	0x46	70	F
0x27	39	1	0x47	71	G
0x28	40	(0x48	72	Н
0x29	41)	0x49	73	I
0x2A	42	*	0x4A	74	J
0x2B	43	+	0x4B	75	K
0x2C	44	7	0x4C	76	L
0x2D	45	-	0x4D	77	М
0x2E	46		0x4E	78	N
0x2F	47	/	0x4F	79	0
0x30	48	0	0x50	80	Ρ
0x31	49	1	0x51	81	Q
0x32	50	2	0x52	82	R
0x33	51	3	0x53	83	S
0x34	52	4	0x54	84	т
0x35	53	5	0x55	85	U
0x36	54	6	0x56	86	10
0x37	55	7	0x57	87	W

#include <xc.h> //PIC18F452 // This program sends numeric values (hex/dec/bin) // for the ASCII characters of 0-5, A-D to PORTB Direction void main (void) (TRISB) unsigned char myNum[] = "012345ABCD"; //data sto unsigned char z; 0 39 10 0 38 TRISB = 0; //PORTB is an OUTPUT on all pins 0 37 13 for(z=0; z<10; z++)</pre> 0 36 140 35 PORTB = myNum[z]; //write ASCII char to PORT. 15 16 0 34 2 PIC18F45

 $\mathbf{z} = \mathbf{0}$ **PORTB** = '0' (in code) PORTB = 0x30 = 48 (actual)

 $PORTB = 0b \ 0011 \ 0000 \ (pins)$

1	<pre>#include <xc.h> //PIC18F452</xc.h></pre>
2	
3	// This program sends numeric values (hex/dec/bin)
4	// for the ASCII characters of 0-5, A-D to PORTB
5	
6	void main(void)
7	₽ {
8	<pre>unsigned char myNum[] = "012345ABCD"; //data stored</pre>
9	unsigned char z;
0_0	
.1	TRISB = 0; //PORTB is an OUTPUT on all pins
2	
.3	for(z=0; z<10; z++)
_4	
5	PORTB = myNum[z]; //write ASCII char to PORTB
- 6	}

z = 1 PORTB = '1' (in code) PORTB = 0x31 = 49 (actual)

PORTB = 0b 0011 0001 (pins)

Hex	Dec	Char	Hex	Dec	Char
0x20	32	Space	0x40	64	6
0x21	33	1	0x41	65	А
0x22	34		0x42	66	в
0x23	35	#	0x43	67	С
0x24	36	\$	0x44	68	D
0x25	37	8	0x45	69	Е
0x26	38	&	0x46	70	F
0x27	39	1	0x47	71	G
0x28	40	(0x48	72	н
0x29	41)	0x49	73	I
0x2A	42	*	0x4A	74	J
0x2B	43	+	0x4B	75	K
0x2C	44	7	0x4C	76	L
0x2D	45	-	0x4D	77	М
0x2E	46		0x4E	78	N
0x2F	47	/	0x4F	79	0
0x30	48	0	0x50	80	P
0x31	49	1	0x51	81	Q
0x32	50	2	0x52	82	R
0x33	51	3	0x53	83	S
0x34	52	4	0x54	84	т
0x35	53	5	0x55	85	U
0x36	54	6	0x56	86	12 <mark>7</mark>
0x37	55	7	0x57	87	W

1	<pre>#include <xc.h> //PIC18F452</xc.h></pre>
2	
3	// This program sends numeric values (hex/dec/bin)
4	// for the ASCII characters of 0-5, A-D to PORTB
5	
6	void main(void)
7	₽ {
8	<pre>unsigned char myNum[] = "012345ABCD"; //data stored</pre>
9	unsigned char z;
0	
1	TRISB = 0; //PORTB is an OUTPUT on all pins
2	
13	for(z=0; z<10; z++)
4	
15	PORTB = myNum[z]; //write ASCII char to PORTB
6	}
-	

z = 6 PORTB = 'A' (in code) PORTB = 0x41 = 65 (actual)

PORTB = 0b 0100 0001 (pins)

Hex	Dec	Char	Hex	Dec	Char
0x20	32	Space	0x40	64	6
0x21	33	1	0x41	65	A
0x22	34		0x42	66	В
0x23	35	#	0x43	67	С
0x24	36	\$	0x44	68	D
0x25	37	8	0x45	69	Е
0x26	38	&	0x46	70	F
0x27	39	1	0x47	71	G
0x28	40	(0x48	72	н
0x29	41)	0x49	73	I
0x2A	42	*	0x4A	74	J
0x2B	43	+	0x4B	75	K
0x2C	44	7	0x4C	76	L
0x2D	45	-	0x4D	77	М
0x2E	46		0x4E	78	N
0x2F	47	1	0x4F	79	0
0x30	48	0	0x50	80	P
0x31	49	1	0x51	81	Q
0x32	50	2	0x52	82	R
0x33	51	3	0x53	83	S
0x34	52	4	0x54	84	т
0x35	53	5	0x55	85	U
0x36	54	6	0x56	86	13 <mark>7</mark>
0x37	55	7	0x57	87	W

Signed char (-128 to +127)

• Still 8-bit data type but MSB is sign value

```
Write a C18 program to send values of -4 to +4 to Port B.
```


Unsigned int (0 to 65,535)

- PIC18 is 8-bit architecture, **int type** (16 bits) takes two bytes of RAM (only use when necessary)
- C compilers use signed int (-32,768 to +32,767) by default unless we put "unsigned"
 - int == signed int

```
#include <P18F458.h>
void main(void)
{
    unsigned int z;
    TRISB = 0; //make Port B an output
    for(z=0;z<=50000;z++)
    {
        PORTB = 0x55;
        PORTB = 0xAA;
     }
    while(1); //stay here forever
}</pre>
```


Larger Integer Types (short, long, short long)

Write a C18 program to toggle all bits of Port B 100,000 times.

Solution:

```
//toggle PB 100,00 times
#include <P18F458.h>
void main(void)
    unsigned short long z;
    unsigned int x;
    TRISE = 0;
                              //make Port B an output
    for(z=0;z=100000;z++)
        PORTB = 0x55:
        PORTB = 0xAA;
    while(1);
                              //stay here forever
```


- Can store and calculate numbers with decimals (precision)
- Always signed, can't be unsigned
 2.5, 32.05898, -1.00232, .2600313, 51156.01, etc.

TABLE 5-3: FLOATING-POINT DATA TYPES

Туре	Size (bits)	Arithmetic Type
float	24 or 32	Real
double	24 or 32	Real
long double	same as double	Real

• Further info: <u>Text</u> and <u>Video Explanation</u> ¹⁷

- In C can use % to perform a modulus of two numbers (find the <u>whole number</u> remainder from a "repeated subtraction")
- 25 % 5 = 0
- 25 % 7 = 4
- 25 % 10 = 5
- 428 % 100 = 28
- 1568 % 10 = 8


```
int i = 7;
int j = 2;
int k = 0;
float f;
//through variables
k = i / j; // k =
f = i / j; // f = ?
f = (float)i / j; // f =
//direct numbers/literals
k = 7 / 2; // k =
f = 7 / 2; // f =
f = 7.0 / 2; // f =
```



```
int i = 7;
int j = 2;
int k = 0;
float f;
//through variables
k = i / j; // k = 3
f = i / j; // f = 3.0
f = (float)i / j; // f = 3.5
//direct numbers/literals
k = 7 / 2; // k = 3
f = 7 / 2; // f = 3.0
f = 7.0 / 2; // f = 3.5
```


• Want to have exact time differences or spacing between certain instructions

- Three methods:
 - Using a simple loop (for/while) (crude)
 - Using PIC18 timer peripheral (later)
 - Built-in delay functions (reliable and accurate)

Two Factors for Delay Accuracy in C

1. The crystal's frequency (int. or ext.)

- Duration of clock period for instruction cycle

2. The compiler used for the C program

- In ASM, we control the exact instructions
- Different compilers produce different ASM code

Time Delay Example

Write a C18 program to toggle all the bits of Port B ports continuously with a 250 ms delay. Assume that the system is PIC18F458 with XTAL = 10 MHz.

```
#include <PIC18F452.h>
void MS_Delay(unsigned int);
```

```
void main(void)
```

```
TRISB = 0;
while(1)
```

```
PORTB = 0x55;
MS_Delay(250);
PORTB = 0xAA;
MS_Delay(250);
```

void MS_Delay(unsigned int msTime)

```
unsigned int i;
unsigned int j;
```

 $F_{OSC} = 10 \text{ MHz} = 10,000,000 \text{ cycles/sec}$

Each instruction takes 4 clock cycles (ticks)

 $F_{CY} = \text{Instruction Cycle Frequency} \\ = \frac{10MHZ}{4} = 2.5\text{MHz} = 2,500,000 \text{ Ins/sec}$

 $T_{CY} = \text{Instruction Cycle Time}$ = 1 / 2.5MHz = 0.0000004 sec per Ins = 0.0004 ms = 0.4 µs

How many IC (instructions) fit into 1ms? 1ms / 0.0004ms = 2,500

→ 2,500 Instruction Cycles take place in 1ms
 → 2,500 Instructions can complete in 1ms²³

Instruction Cycle

How many IC (instructions) fit into 1ms? 1 ms / 0.0004 ms = 2,500

- \rightarrow 2,500 Instruction Cycles take place in 1ms
- 24 2,500 Instructions can complete in 1ms (generalizing since most instructions only take 1 Ins. Cycle) \rightarrow

Delay Functions in the XC8 Compiler

- 1. Include the "xc.h" header file
- 2. Define your crystal's frequency
 - _XTAL_FREQ
- 3. Can now use these 2 delay functions:
 - _____delay_us(x); //unsigned long (0 4294967295)
 - _____delay__ms(x); //unsigned long (0 4294967295)

```
#include <xc.h> 
    #define XTAL FREQ 1000000
                                      // Running at 10MHz
    #define LED LEFT
                        PORTAbits.RA3 // QwikFlash red LED (left) to toggle
    #define LED CENTER PORTAbits.RA2 // QwikFlash red LED (center) to toggle
                        PORTAbits.RA1 // QwikFlash red LED (right) to toggle
    #define LED RIGHT
    void Toggle LEDs(void);
10
11
    void main (void)
12
       TRISA = 0; //PORTA is an OUTPUT
14
15
        //Main routine
       while(1)
16
17
18
            //Your main code goes here
19
            Toggle LEDs();
20
21
22
23
    void Toggle LEDs(void)
24
   🗏 🖣
       LED LEFT ^{=} 1;
25
          delay ms(100); 🔶 🛁
26
27
28
        LED CENTER ^{=} 1;
29
          delay ms(100);
31
        LED RIGHT ^{=} 1;
32
          delay ms(100);
33
```


- Btye-Size Register Access
 - Labels still the same
 - PORTA PORTD
 - TRISA TRISD
 - INTCON
- Bit-Addressable Register Access
 - PORTBbits.RB3
 - TRISCbits.RC7 or TRISCbits.TRISC7
 - INTCONbits.RBIE

PORT I/O Programming in C


```
unsigned char mybyte;
TRISB = 0xFF; //Port B as input
TRISC = 0; //Port C as output
while(1)
{
    mybyte = PORTB; //get a byte from Port B
    MSDelay(500);
    PORTC = mybyte; //send it to Port C
}
```


PORTxbits.Rxy

Table 7-2: Single-Bit Addresses of PIC18F458/4580 Ports						
PORTA	PORTB	PORTC	PORTD	PORTE	Port's Bit	
RA0	RB0	RC0	RD0	RE0	D0	
RA1	RB1	RC1	RD1	RE1	D1	
RA2	RB2	RC2	RD2	RE2	D2	
RA3	RB3	RC3	RD3		D3	
RA4	RB4	RC4	RD4		D4	
RA5	RB5	RC5	RD5		D5	
	RB6	RC6	RD6		D6	
	RB7	RC7	RD7		D7	


```
#include <P18F458.h>
void MSDelay(unsigned int);
#define Dsensor PORTBbits.RB1
#define buzzer PORTCbits.RC7
void main(void)
                                   //PORTB.1 as an input
    TRISBbits.TRISB1 = 1;
                                   //make PORTC.7 an output
    TRISCbits.TRISC7 = 0;
    while (Dsensor == 1)
        buzzer = 0;
        MSDelay(200);
        buzzer = 1;
        MSDelay(200);
                             //stay here forever
    while(1);
```


Write a C18 program to get the status of bit RB0, and send it to RC7 continuously. Solution:

```
#include <P18F458.h>
#define inbit PORTBbits.RB0
#define outbit PORTCbits.RC7
void main(void)
  {
    TRISBbits.TRISB0 = 1; //make RB0 an input
    TRISCbits.TRISC7 = 0; //make RC7 an output
    while(1)
        {
        outbit = inbit; //get a bit from RB0
        //and send it to RC7
    }
}
```


.ASM Generated from C

CSE@UTA

1:		<pre>#include <p18f458.h></p18f458.h></pre>	
2:		#define inbit PORTBbits.RB0	
3;		#define outbit PORTCbits.RC7	
4:		void main(void)	
5:		{	
6:		TRISBbits.TRISB0 = 1;	//make RB0 an input
0000E2	8093	BSF 0xf93, 0, ACCESS	
7:		TRISCUITS.TRISC7 = $0;$	//make RC7 an output
0000E4	9E94	BCF 0xf94, 0x7, ACCESS	
8:		while(1)	
0000F2	D7F9	BRA 0xe6	
9:		{	
10:		outbit = inbit;	//get bit from RBO
0000E6	5081	MOVF 0xf81, W, ACCESS	
0000E8	0B01	ANDLW 0x1	
0000EA	E002	BZ 0xf0	
0000EC	8E82	BSF 0xf82, 0x7, ACCESS	
0000EE	D001	BRA 0xf2	
0000F0	9E82	BCF 0xf82, 0x7, ACCESS	
11:			//and send it to RC7
12:		}	
13:		}	
0000F4	0012	RETURN 0	3

Header Files

- Remember that certain register/variable names are <u>not native C keywords</u>
- They are PIC-specific
 PORTB, TRISA, TMR0H, PRODL, etc.
- Defined and mapped in header file
 Using regular data types (char, int, struct, etc.)
- Regular P18Fxxx.h (device) header files
 C:\Program Files (x86)\Microchip\xc8\v1.20\include

Header Files

- Other functional headers are available
 - adc.h
 - delays.h
 - i2c.h
 - pwm.h
 - timers.h
 - usart.h

- Peripheral library Header Files
 - C:\Program Files (x86)\Microchip\xc8\v1.20\include\plib
 - C:\Program Files (x86)\Microchip\xc8\v1.20\sources\pic18\plib

Logic Operations in C

• Bit-Wise Operators

Table 7-3: Bit-wise Logic Operators for C						
		AND	OR	EX-OR	Inverter	
Α	В	A&B	AB	A^B	Y=~B	
0	0	0	0	0	1	
0	1	0	1	1	0	
1	0	0	1	1		
1	1	1	1	0		

- Bit-Wise Shift Operators
 - Can shift right/left by X bits
 Shift right >>
 Shift left <<

Logic Operations in C

TRISB	=	0;	//make Ports B, C,
TRISC	=	0;	//and D output ports
TRISD	÷	0;	
PORTB	=	0x35 & 0x0F;	//ANDing
PORTC	=	0x04 0x68;	//ORing
PORTD	=	0x54 ^ 0x78;	//XORing
PORTB	=	~0x55;	//inverting
PORTC	=	0x9A >> 3;	//shifting right 3 times
PORTD	-	0x77 >> 4;	//shifting right 4 times
PORTB	=	0x6 << 4;	<pre>//shifting left 4 times</pre>
while	(1)	i	//stay here forever

Binary (hex) to Decimal and ASCII Conversion

- Sometimes we can't handle multiple-digit decimals natively in C for display purposes
- printf() is standard for generic C but requires more memory space than a PIC18 is willing to sacrifice
- Best to build your own "custom" print or display functions in C

• Want each digit of **253** (0b11111101, 0xFD) and convert to ASCII for displaying

 Want each digit of 253 (0b11111101, 0xFD) and convert to ASCII for displaying Hex Dec Char Hex I 0x20 32 Space 0x40

1	unsigned char whole, part, d1, d2, d3;
2	
3	whole = 253; //whole == d3_d2_d1
Δ	

0x20 32 Space 0x40 64 @ 0x21 33 ! 0x41 65 A 0x22 34 " 0x42 66 B 0x23 35 # 0x43 67 C 0x24 36 \$ 0x44 68 D 0x25 37 % 0x45 69 E 0x26 38 & 0x46 70 F 0x27 39 ' 0x47 71 G 0x28 40 (0x48 72 H 0x29 41) 0x49 73 I 0x20 42 * 0x40 74 J 0x22 41) 0x42 76 L 0x20 45 - 0x40 77 M 0x22 46 . 0x42 78 N 0x22 47 / 0x44 74 J 0x31 49 1 0x50 8	Hex	Dec	Char	Hex	Dec	Char
0x21 33 ! $0x41$ 65 A $0x22$ 34 " $0x42$ 66 B $0x23$ 35 # $0x43$ 67 C $0x24$ 36 \$ $0x44$ 68 D $0x25$ 37 % $0x45$ 69 E $0x26$ 38 $&$ $0x46$ 70 F $0x27$ 39 ' $0x47$ 71 G $0x27$ 39 ' $0x47$ 71 G $0x28$ 40 ($0x48$ 72 H $0x29$ 41) $0x49$ 73 I $0x28$ 42 * $0x44$ 74 J $0x28$ 43 + $0x48$ 75 K $0x22$ 44 , $0x44$ 78 N $0x22$ 45 - $0x54$ 80 P $0x30$ 48 0 $0x55$ 85 U $0x31$ 49 1 $0x51$ 81 Q $0x33$ 51 3 $0x55$ 85 U $0x36$ 54 6 $0x56$ 86 V $0x33$ 55 7 $0x57$ 87 W $0x38$ 56 8 $0x58$ 88 X	0x20	32	Space	0x40	64	6
0x22 34 " $0x42$ 66 B $0x23$ 35 # $0x43$ 67 C $0x24$ 36 \$ $0x44$ 68 D $0x25$ 37 \$ $0x44$ 69 E $0x26$ 38 \$ $0x45$ 69 E $0x27$ 39 ' $0x47$ 71 G $0x27$ 39 ' $0x47$ 71 G $0x27$ 39 ' $0x47$ 71 G $0x28$ 40 ($0x48$ 72 H $0x29$ 41) $0x49$ 73 I $0x24$ 42 * $0x44$ 74 J $0x28$ 43 + $0x48$ 75 K $0x22$ 44 , $0x44$ 76 L $0x22$ 45 - $0x44$ 77 M $0x22$ 44 , $0x44$ 78 N $0x22$ 44 , $0x44$ 78 N $0x24$ 47 / $0x44$ 78 N $0x25$ 47 / $0x44$ 78 N $0x31$ 49 1 $0x51$ 81 Q $0x33$ 51 3 $0x53$ 83 S $0x34$ 52 4 $0x56$ 86 V $0x36$ 54 6 $0x56$ 86 V $0x33$ 55 7 $0x57$ 87 W $0x38$ 56 8 $0x58$ 88 X </td <td>0x21</td> <td>33</td> <td>1</td> <td>0x41</td> <td>65</td> <td>А</td>	0x21	33	1	0x41	65	А
0x23 35 # $0x43$ 67 C $0x24$ 36 \$ $0x44$ 68 D $0x25$ 37 \$ $0x45$ 69 E $0x26$ 38 \$ $0x45$ 69 E $0x27$ 39 ' $0x47$ 71 G $0x27$ 39 ' $0x47$ 71 G $0x28$ 40 ($0x48$ 72 H $0x29$ 41) $0x49$ 73 I $0x24$ 42 * $0x44$ 74 J $0x28$ 43 + $0x48$ 75 K $0x22$ 44 , $0x44$ 76 L $0x22$ 45 - $0x40$ 77 M $0x22$ 46 . $0x44$ 79 O $0x30$ 48 0 $0x50$ 80 P $0x31$ 49 1 $0x51$ 81 Q $0x33$ 51 3 $0x53$ 83 S $0x34$ 52 4 $0x54$ 84 T $0x35$ 53 5 $0x55$ 85 U $0x36$ 54 6 $0x56$ 86 V $0x38$ 56 8 $0x58$ 88 X $0x39$ 57 9 $0x59$ 89 Y $0x3A$ 58 12 $0x54$ 30 2	0x22	34		0x42	66	в
0x24 36 \$ 0x44 68 D 0x25 37 % 0x45 69 E 0x26 38 & 0x46 70 F 0x27 39 ' 0x47 71 G 0x28 40 (0x48 72 H 0x29 41) 0x49 73 I 0x2A 42 * 0x4A 74 J 0x2B 43 + 0x4B 75 K 0x2C 44 , 0x4C 76 L 0x2D 45 - 0x4D 77 M 0x2E 46 . 0x4F 79 O 0x30 48 0 0x50 80 P 0x31 49 1 0x51 81 Q 0x33 51 3 0x53 83 S 0x34 52 4 0x54 84 T 0x35 53 5 0x55 85 <td>0x23</td> <td>35</td> <td>#</td> <td>0x43</td> <td>67</td> <td>С</td>	0x23	35	#	0x43	67	С
0x25 37 % 0x45 69 E 0x26 38 & 0x46 70 F 0x27 39 ' 0x47 71 G 0x28 40 (0x47 71 G 0x29 41) 0x49 73 I 0x28 42 * 0x44 74 J 0x28 42 * 0x48 75 K 0x22 41) 0x48 75 K 0x22 43 + 0x48 76 L 0x20 45 - 0x40 77 M 0x22 46 . 0x44 79 O 0x30 48 0 0x50 80 P 0x31 49 1 0x51 81 Q 0x32 50 2 0x52 82 R 0x33 51 3 0x53 83 S 0x34 52 4 0x54 84 <td>0x24</td> <td>36</td> <td>\$</td> <td>0x44</td> <td>68</td> <td>D</td>	0x24	36	\$	0x44	68	D
0x26 38 $&$ $0x46$ 70 F $0x27$ 39 ' $0x47$ 71 G $0x28$ 40 ($0x48$ 72 H $0x29$ 41) $0x49$ 73 I $0x2A$ 42 * $0x4A$ 74 J $0x2B$ 43 + $0x4B$ 75 K $0x2C$ 44 , $0x4C$ 76 L $0x2D$ 45 - $0x4D$ 77 M $0x2E$ 46 . $0x4E$ 78 N $0x2F$ 47 / $0x4F$ 79 O $0x30$ 48 0 $0x50$ 80 P $0x31$ 49 1 $0x51$ 81 Q $0x33$ 51 3 $0x53$ 83 S $0x34$ 52 4 $0x54$ 84 T $0x35$ 53 5 $0x55$ 85 U $0x36$ 54 6 $0x56$ 86 V $0x37$ 55 7 $0x57$ 87 W $0x38$ 56 8 $0x58$ 88 X $0x39$ 57 9 $0x54$ 39 Y	0x25	37	8	0x45	69	Е
0x27 39 ' $0x47$ 71 G $0x28$ 40 ($0x48$ 72 H $0x29$ 41) $0x49$ 73 I $0x2A$ 42 * $0x48$ 74 J $0x2B$ 43 + $0x4B$ 75 K $0x2C$ 44 , $0x4C$ 76 L $0x2D$ 45 - $0x4D$ 77 M $0x2E$ 46 . $0x4E$ 78 N $0x2F$ 47 / $0x4F$ 79 O $0x30$ 48 0 $0x50$ 80 P $0x31$ 49 1 $0x51$ 81 Q $0x33$ 51 3 $0x53$ 83 S $0x33$ 51 3 $0x53$ 83 S $0x34$ 52 4 $0x54$ 84 T $0x35$ 53 5 $0x55$ 85 U $0x36$ 54 6 $0x56$ 86 V $0x37$ 55 7 $0x57$ 87 W $0x38$ 56 8 $0x58$ 88 X $0x39$ 57 9 $0x53$ 90 Z	0x26	38	&	0x46	70	F
0x28 40 (0x48 72 H 0x29 41) 0x49 73 I 0x2A 42 * 0x48 74 J 0x2B 43 + 0x4B 75 K 0x2C 44 , 0x4C 76 L 0x2D 45 - 0x4D 77 M 0x2E 46 . 0x4E 78 N 0x2F 47 / 0x4F 79 O 0x30 48 0 0x50 80 P 0x31 49 1 0x51 81 Q 0x33 51 3 0x53 83 S 0x34 52 4 0x54 84 T 0x35 53 5 0x55 85 U 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 <td>0x27</td> <td>39</td> <td>1</td> <td>0x47</td> <td>71</td> <td>G</td>	0x27	39	1	0x47	71	G
0x29 41) 0x49 73 I 0x2A 42 * 0x4A 74 J 0x2B 43 + 0x4B 75 K 0x2C 44 , 0x4D 76 L 0x2D 45 - 0x4D 77 M 0x2E 46 . 0x4E 78 N 0x2F 47 / 0x4F 79 O 0x30 48 0 0x50 80 P 0x31 49 1 0x51 81 Q 0x32 50 2 0x52 82 R 0x33 51 3 0x53 83 S 0x34 52 4 0x54 84 T 0x35 53 5 0x55 85 U 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 <td>0x28</td> <td>40</td> <td>(</td> <td>0x48</td> <td>72</td> <td>н</td>	0x28	40	(0x48	72	н
0x2A 42 * 0x4A 74 J 0x2B 43 + 0x4B 75 K 0x2C 44 , 0x4C 76 L 0x2D 45 - 0x4D 77 M 0x2E 46 . 0x4F 79 O 0x2F 47 / 0x4F 79 O 0x30 48 0 0x50 80 P 0x31 49 1 0x51 81 Q 0x33 51 3 0x53 83 S 0x33 51 3 0x55 85 U 0x33 51 3 0x55 85 U 0x35 53 5 0x55 85 U 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x54 39 <td>0x29</td> <td>41</td> <td>)</td> <td>0x49</td> <td>73</td> <td>I</td>	0x29	41)	0x49	73	I
0x2B 43 + 0x4B 75 K 0x2C 44 , 0x4C 76 L 0x2D 45 - 0x4D 77 M 0x2E 46 . 0x4E 78 N 0x2F 47 / 0x4F 79 O 0x30 48 0 0x50 80 P 0x31 49 1 0x51 81 Q 0x32 50 2 0x52 82 R 0x33 51 3 0x53 83 S 0x34 52 4 0x54 84 T 0x35 53 5 0x55 85 U 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x59 89 Y	0x2A	42	*	0x4A	74	J
0x2C 44 , 0x4C 76 L 0x2D 45 - 0x4D 77 M 0x2E 46 . 0x4E 78 N 0x2F 47 / 0x4F 79 O 0x30 48 0 0x50 80 P 0x31 49 1 0x51 81 Q 0x32 50 2 0x52 82 R 0x33 51 3 0x53 83 S 0x34 52 4 0x54 84 T 0x35 53 5 0x55 85 U 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x54 39 Y	0x2B	43	+	0x4B	75	K
0x2D 45 - 0x4D 77 M 0x2E 46 . 0x4E 78 N 0x2F 47 / 0x4F 79 O 0x30 48 0 0x50 80 P 0x31 49 1 0x51 81 Q 0x32 50 2 0x52 82 R 0x33 51 3 0x53 83 S 0x34 52 4 0x54 84 T 0x35 53 5 0x55 85 U 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x57 89 Y 0x3A 58 : 0x5A 20 Z	0x2C	44	7	0x4C	76	L
0x2E 46 . 0x4E 78 N 0x2F 47 / 0x4F 79 O 0x30 48 0 0x50 80 P 0x31 49 1 0x51 81 Q 0x32 50 2 0x52 82 R 0x33 51 3 0x53 83 S 0x34 52 4 0x54 84 T 0x35 53 5 0x55 85 U 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x58 89 Y 0x3A 58 : 0x5A 20 Z	0x2D	45	-	0x4D	77	М
0x2F 47 / 0x4F 79 0 0x30 48 0 0x50 80 P 0x31 49 1 0x51 81 Q 0x32 50 2 0x52 82 R 0x33 51 3 0x53 83 S 0x34 52 4 0x54 84 T 0x35 53 5 0x55 85 U 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x58 89 Y 0x3A 58 : 0x5A 20 Z	0x2E	46		0x4E	78	N
0x30 48 0 0x50 80 P 0x31 49 1 0x51 81 Q 0x32 50 2 0x52 82 R 0x33 51 3 0x53 83 S 0x34 52 4 0x54 84 T 0x35 53 5 0x55 85 U 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x58 89 Y 0x3A 58 : 0x5A 20 Z	0x2F	47	/	0x4F	79	0
0x31 49 1 0x51 81 Q 0x32 50 2 0x52 82 R 0x33 51 3 0x53 83 S 0x34 52 4 0x54 84 T 0x35 53 5 0x55 85 U 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x59 89 Y 0x3A 58 : 0x5A 200 Z	0x30	48	0	0x50	80	Р
0x32 50 2 0x52 82 R 0x33 51 3 0x53 83 S 0x34 52 4 0x54 84 T 0x35 53 5 0x55 85 U 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x59 89 Y 0x3A 58 : 0x5A 200 Z	0x31	49	1	0x51	81	Q
0x33 51 3 0x53 83 S 0x34 52 4 0x54 84 T 0x35 53 5 0x55 85 U 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x59 89 Y 0x3A 58 : 0x5A 200 Z	0x32	50	2	0x52	82	R
0x34 52 4 0x54 84 T 0x35 53 5 0x55 85 U 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x59 89 Y 0x3A 58 : 0x5A 20 Z	0x33	51	3	0x53	83	S
0x35 53 5 0x55 85 U 0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x59 89 Y 0x3A 58 : 0x5A3@0 Z	0x34	52	4	0x54	84	т
0x36 54 6 0x56 86 V 0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x59 89 Y 0x3A 58 : 0x5A 200 Z	0x35	53	5	0x55	85	U
0x37 55 7 0x57 87 W 0x38 56 8 0x58 88 X 0x39 57 9 0x59 89 Y 0x3A 58 : 0x5A 300 Z	0x36	54	6	0x56	86	v
0x38 56 8 0x58 88 X 0x39 57 9 0x59 89 Y 0x3A 58 : 0x5A 300 Z	0x37	55	7	0x57	87	W
0x39 57 9 0x59 89 Y 0x3A 58 : 0x5A 3 0 Z	0x38	56	8	0x58	88	Х
0x3A 58 : 0x5A300 Z	0x39	57	9	0x59	89	Y
	0x3A	58	:	0x5A	390	Z

 Want each digit of 253 (0b11111101, 0xFD) and convert to ASCII for displaying Hex Dec Char Hex D 0x20 32 Space 0x40

1	unsigned char whole	, part,	d1, d2	2, d3;
2				
3	whole = 253; //whol	e == d3	d2 d1	
4		_		
5	part = whole / 10;	//part	= 253	/ 10 = 2
6	d1 = whole % 10;	//d1	= 253	8 10 = 3
7	d2 = part % 10;	//d2	= 25	8 10 = 5
8	d3 = part / 10;	//d3	= 25	/ 10 = 2

Hex	Dec	Char	Hex	Dec	Char
0x20	32	Space	0x40	64	6
0x21	33	1	0x41	65	А
0x22	34		0x42	66	в
0x23	35	#	0x43	67	С
0x24	36	\$	0x44	68	D
0x25	37	8	0x45	69	Е
0x26	38	&	0x46	70	F
0x27	39	1.00	0x47	71	G
0x28	40	(0x48	72	н
0x29	41)	0x49	73	I
0x2A	42	*	0x4A	74	J
0x2B	43	+	0x4B	75	K
0x2C	44	,	0x4C	76	L
0x2D	45	-	0x4D	77	М
0x2E	46		0x4E	78	N
0x2F	47	1	0x4F	79	0
0x30	48	0	0x50	80	Р
0x31	49	1	0x51	81	Q
0x32	50	2	0x52	82	R
0x33	51	3	0x53	83	S
0x34	52	4	0x54	84	т
0x35	53	5	0x55	85	U
0x36	54	6	0x56	86	v
0x37	55	7	0x57	87	W
0x38	56	8	0x58	88	Х
0x39	57	9	0x59	89	Y
0x3A	58	:	0x5A	4غ	\mathbf{Z}
· · · ·					-

 Want each digit of 253 (0b11111101, 0xFD) and convert to ASCII for displaying Hex Dec Char Hex D 0x20 32 Space 0x40

1	unsigned char whole	, part, d1, d2, d3;	
2			
3	<pre>whole = 253; //whol</pre>	$e == d3_{d2}d1$	
4			
5	<pre>part = whole / 10;</pre>	//part = 253 / 10 = .	25
6	d1 = whole % 10;	//d1 = 253 % 10 = .	3
7	d2 = part % 10;	//d2 = 25 % 10 = .	5
8	d3 = part / 10;	//d3 = 25 / 10 = .	2
9			
10	d1 = d1 + 48;	//or + 0x30	
11	d2 = d2 + 48;	//or + 0x30	
12	d3 = d3 + 48;	//or + 0x30	

Hex	Dec	Char	Hex	Dec	Char
0x20	32	Space	0x40	64	6
0x21	33	1	0x41	65	А
0x22	34		0x42	66	в
0x23	35	#	0x43	67	С
0x24	36	\$	0x44	68	D
0x25	37	8	0x45	69	E
0x26	38	&	0x46	70	F
0x27	39	1	0x47	71	G
0x28	40	(0x48	72	н
0x29	41)	0x49	73	I
0x2A	42	*	0x4A	74	J
0x2B	43	+	0x4B	75	K
0x2C	44	7	0x4C	76	L
0x2D	45	-	0x4D	77	М
0x2E	46		0x4E	78	N
0x2F	47	/	0x4F	79	0
0x30	48	0	0x50	80	Р
0x31	49	1	0x51	81	Q
0x32	50	2	0x52	82	R
0x33	51	3	0x53	83	S
0x34	52	4	0x54	84	т
0x35	53	5	0x55	85	U
0x36	54	6	0x56	86	v
0x37	55	7	0x57	87	W
0x38	56	8	0x58	88	х
0x39	57	9	0x59	89	Y
0x3A	58		0x5A	490	Z

#define Directive

Can associate labels with numbers or registers as a constant

#define LED_OUTPUT PORTBbits.RB2 #define MAX_USERS 50

- For PIC C Programming
 Textbook Ch. 7 for more details
- Start looking over Arithmetic/Logic
 - Textbook Ch. 5